❤️ VioricaMarian1 tweet about afternoon classes

I wonder what a statistical analysis would do to improve peoples’ lives if registrars attempted to put the mass of classes in the middle of the day? Would educational outcomes improve along with peoples’ psyches? Many schedulers are trying to maximize based on the scarcity of classroom resources. What if they maximized on mental health and classroom performance? Is classroom scheduling potentially a valuable public health tool?

❤️ VioricaMarian1 tweet about afternoon classes was originally published on Chris Aldrich

Statistical Physics, Information Processing, and Biology Workshop at Santa Fe Institute

Statistical Physics, Information Processing, and Biology Workshop at Santa Fe Institute

I just found out about this from John Carlos Baez and wish I could go! How have I not managed to have heard about it?

Stastical Physics, Information Processing, and Biology


November 16, 2016 – November 18, 2016
9:00 AM
Noyce Conference Room

This workshop will address a fundamental question in theoretical biology: Does the relationship between statistical physics and the need of biological systems to process information underpin some of their deepest features? It recognizes that a core feature of biological systems is that they acquire, store and process information (i.e., perform computation). However to manipulate information in this way they require a steady flux of free energy from their environments. These two, inter-related attributes of biological systems are often taken for granted; they are not part of standard analyses of either the homeostasis or the evolution of biological systems. In this workshop we aim to fill in this major gap in our understanding of biological systems, by gaining deeper insight in the relation between the need for biological systems to process information and the free energy they need to pay for that processing.

The goal of this workshop is to address these issues by focusing on a set three specific question:

  1. How has the fraction of free energy flux on earth that is used by biological computation changed with time?;
  2. What is the free energy cost of biological computation / function?;
  3. What is the free energy cost of the evolution of biological computation / function.

In all of these cases we are interested in the fundamental limits that the laws of physics impose on various aspects of living systems as expressed by these three questions.

Purpose: Research Collaboration
SFI Host: David Krakauer, Michael Lachmann, Manfred Laubichler, Peter Stadler, and David Wolpert

Statistical Physics, Information Processing, and Biology Workshop at Santa Fe Institute was originally published on Chris Aldrich

Network Science by Albert-László Barabási

Network Science by Albert-László Barabási
Network Science by Albert-László BarabásiAlbert-László Barabási(Cambridge University Press)

I ran across a link to this textbook by way of a standing Google alert, and was excited to check it out. I was immediately disappointed to think that I would have to wait another month and change for the physical textbook to be released, but made my pre-order directly. Then with a bit of digging around, I realized that individual chapters are available immediately to quench my thirst until the physical text is printed next month.

The power of network science, the beauty of network visualization.

Network Science, a textbook for network science, is freely available under the Creative Commons licence. Follow its development on Facebook, Twitter or by signing up to our mailing list, so that we can notify you of new chapters and developments.

The book is the result of a collaboration between a number of individuals, shaping everything, from content (Albert-László Barabási), to visualizations and interactive tools (Gabriele Musella, Mauro Martino, Nicole Samay, Kim Albrecht), simulations and data analysis (Márton Pósfai). The printed version of the book will be published by Cambridge University Press in 2016. In the coming months the website will be expanded with an interactive version of the text, datasets, and slides to teach the material.

Book Contents

Personal Introduction
1. Introduction
2. Graph Theory
3. Random Networks
4. The Scale-Free Property
5. The Barabási-Albert Model
6. Evolving Networks
7. Degree Correlations
8. Network Robustness
9. Communities
10. Spreading Phenomena
Usage & Acknowledgements

Albert-László Barabási
on Network Science (book website)

Networks are everywhere, from the Internet, to social networks, and the genetic networks that determine our biological existence. Illustrated throughout in full colour, this pioneering textbook, spanning a wide range of topics from physics to computer science, engineering, economics and the social sciences, introduces network science to an interdisciplinary audience. From the origins of the six degrees of separation to explaining why networks are robust to random failures, the author explores how viruses like Ebola and H1N1 spread, and why it is that our friends have more friends than we do. Using numerous real-world examples, this innovatively designed text includes clear delineation between undergraduate and graduate level material. The mathematical formulas and derivations are included within Advanced Topics sections, enabling use at a range of levels. Extensive online resources, including films and software for network analysis, make this a multifaceted companion for anyone with an interest in network science.

Source: Cambridge University Press

The textbook is available for purchase in September 2016 from Cambridge University Press. Pre-order now on Amazon.com.

If you’re not already doing so, you should follow Barabási on Twitter.


    Syndicated to:

Network Science by Albert-László Barabási was originally published on Chris Aldrich | Boffo Socko

Weekly Recap: Interesting Articles 7/24-7/31 2016

Went on vacation or fell asleep at the internet wheel this week? Here’s some of the interesting stuff you missed.

Science & Math


Indieweb, Internet, Identity, Blogging, Social Media


Weekly Recap: Interesting Articles 7/24-7/31 2016 was originally published on Chris Aldrich

The Information Universe Conference

The Information Universe Conference

Yesterday, via a notification from Lanyard, I came across a notice for the upcoming conference “The Information Universe” which hits several of the sweet spots for areas involving information theory, physics, the origin of life, complexity, computer science, and microbiology. It is scheduled to occur from October 7-9, 2015 at the Infoversum Theater in Groningen, The Netherlands.

I’ll let their site speak for itself below, but they already have an interesting line up of speakers including:

Keynote speakers

  • Erik Verlinde, Professor Theoretical Physics, University of Amsterdam, Netherlands
  • Alex Szalay, Alumni Centennial Professor of Astronomy, The Johns Hopkins University, USA
  • Gerard ‘t Hooft, Professor Theoretical Physics, University of Utrecht, Netherlands
  • Gregory Chaitin, Professor Mathematics and Computer Science, Federal University of Rio de Janeiro, Brasil
  • Charley Lineweaver, Professor Astronomy and Astrophysics, Australian National University, Australia
  • Lude Franke, Professor System Genetics, University Medical Center Groningen, Netherlands
Infoversum Theater, The Netherlands
Infoversum Theater, The Netherlands

Conference synopsis from their homepage:

The main ambition of this conference is to explore the question “What is the role of information in the physics of our Universe?”. This intellectual pursuit may have a key role in improving our understanding of the Universe at a time when we “build technology to acquire and manage Big Data”, “discover highly organized information systems in nature” and “attempt to solve outstanding issues on the role of information in physics”. The conference intends to address the “in vivo” (role of information in nature) and “in vitro” (theory and models) aspects of the Information Universe.

The discussions about the role of information will include the views and thoughts of several disciplines: astronomy, physics, computer science, mathematics, life sciences, quantum computing, and neuroscience. Different scientific communities hold various and sometimes distinct formulations of the role of information in the Universe indicating we still lack understanding of its intrinsic nature. During this conference we will try to identify the right questions, which may lead us towards an answer.

  • Is the universe one big information processing machine?
  • Is there a deeper layer in quantum mechanics?
  • Is the universe a hologram?
  • Is there a deeper physical description of the world based on information?
  • How close/far are we from solving the black hole information paradox?
  • What is the role of information in highly organized complex life systems?
  • The Big Data Universe and the Universe : are our numerical simulations and Big Data repositories (in vitro) different from real natural system (in vivo)?
  • Is this the road to understanding dark matter, dark energy?

The conference will be held in the new 260 seats planetarium theatre in Groningen, which provides an inspiring immersive 3D full dome display, e.g. numerical simulations of the formation of our Universe, and anything else our presenters wish to bring in. The digital planetarium setting will be used to visualize the theme with modern media.

The Information Universe Website

Additional details about the conference including the participants, program, venue, and registration can also be found at their website.

The Information Universe Conference was originally published on Chris Aldrich