Gems And Astonishments of Mathematics: Past and Present—Lecture One

Gems And Astonishments of Mathematics: Past and Present—Lecture One

Last night was the first lecture of Dr. Miller’s Gems And Astonishments of Mathematics: Past and Present class at UCLA Extension. There are a good 15 or so people in the class, so there’s still room (and time) to register if you’re interested. While Dr. Miller typically lectures on one broad topic for a quarter (or sometimes two) in which the treatment continually builds heavy complexity over time, this class will cover 1-2 much smaller particular mathematical problems each week. Thus week 11 won’t rely on knowing all the material from the prior weeks, which may make things easier for some who are overly busy. If you have the time on Tuesday nights and are interested in math or love solving problems, this is an excellent class to consider. If you’re unsure, stop by one of the first lectures on Tuesday nights from 7-10 to check them out before registering.

Lecture notes

For those who may have missed last night’s first lecture, I’m linking to a Livescribe PDF document which includes the written notes as well as the accompanying audio from the lecture. If you view it in Acrobat Reader version X (or higher), you should be able to access the audio portion of the lecture and experience it in real time almost as if you had been present in person. (Instructions for using Livescribe PDF documents.)

We’ve covered the following topics:

  • Class Introduction
  • Erdős Discrepancy Problem
    • n-cubes
    • Hilbert’s Cube Lemma (1892)
    • Schur (1916)
    • Van der Waerden (1927)
  • Sylvester’s Line Problem (partial coverage to be finished in the next lecture)
    • Ramsey Theory
    • Erdős (1943)
    • Gallai (1944)
    • Steinberg’s alternate (1944)
    • DeBruijn and Erdős (1948)
    • Motzkin (1951)
    • Dirac (1951)
    • Kelly & Moser (1958)
    • Tao-Green Proof
  • Homework 1 (homeworks are generally not graded)

Over the coming days and months, I’ll likely bookmark some related papers and research on these and other topics in the class using the class identifier MATHX451.44 as a tag in addition to topic specific tags.

Course Description

Mathematics has evolved over the centuries not only by building on the work of past generations, but also through unforeseen discoveries or conjectures that continue to tantalize, bewilder, and engage academics and the public alike. This course, the first in a two-quarter sequence, is a survey of about two dozen problems—some dating back 400 years, but all readily stated and understood—that either remain unsolved or have been settled in fairly recent times. Each of them, aside from presenting its own intrigue, has led to the development of novel mathematical approaches to problem solving. Topics to be discussed include (Google away!): Conway’s Look and Say Sequences, Kepler’s Conjecture, Szilassi’s Polyhedron, the ABC Conjecture, Benford’s Law, Hadamard’s Conjecture, Parrondo’s Paradox, and the Collatz Conjecture. The course should appeal to devotees of mathematical reasoning and those wishing to keep abreast of recent and continuing mathematical developments.

Suggested Prerequisites

Some exposure to advanced mathematical methods, particularly those pertaining to number theory and matrix theory. Most in the class are taking the course for “fun” and the enjoyment of learning, so there is a huge breadth of mathematical abilities represented–don’t not take the course because you feel you’ll get lost.

Register now

I’ve written some general thoughts, hints, and tips on these courses in the past.

Renovated Classrooms

I’d complained to the UCLA administration before about how dirty the windows were in the Math Sciences Building, but they went even further than I expected in fixing the problem. Not only did they clean the windows they put in new flooring, brand new modern chairs, wood paneling on the walls, new projection, and new white boards! I particularly love the new swivel chairs, and it’s nice to have such a lovely new environment in which to study math.

The newly renovated classroom space in UCLA’s Math Sciences Building

Category Theory for Winter 2019

As I mentioned the other day, Dr. Miller has also announced (and reiterated last night) that he’ll be teaching a course on the topic of Category Theory for the Winter quarter coming up. Thus if you’re interested in abstract mathematics or areas of computer programming that use it, start getting ready!

Gems And Astonishments of Mathematics: Past and Present—Lecture One was originally published on Chris Aldrich

Basic Category Theory by Tom Leinster | Free Ebook Download

Basic Category Theory by Tom Leinster | Free Ebook Download
Basic Category Theory by Tom Leinster (

This short introduction to category theory is for readers with relatively little mathematical background. At its heart is the concept of a universal property, important throughout mathematics. After a chapter introducing the basic definitions, separate chapters present three ways of expressing universal properties: via adjoint functors, representable functors, and limits. A final chapter ties the three together.
For each new categorical concept, a generous supply of examples is provided, taken from different parts of mathematics. At points where the leap in abstraction is particularly great (such as the Yoneda lemma), the reader will find careful and extensive explanations.

Tom Leinster has released a digital e-book copy of his textbook Basic Category Theory on arXiv [1]

h/t to John Carlos Baez for the notice:

My friend Tom Leinster has written a great introduction to that wonderful branch of math called category theory! It’s free:

It starts with the basics and it leads up to a trio of related concepts, which are all ways of talking about universal properties.

Huh? What’s a ‘universal property’?

In category theory, we try to describe things by saying what they do, not what they’re made of. The reason is that you can often make things out of different ingredients that still do the same thing! And then, even though they will not be strictly the same, they will be isomorphic: the same in what they do.

A universal property amounts to a precise description of what an object does.

Universal properties show up in three closely connected ways in category theory, and Tom’s book explains these in detail:

through representable functors (which are how you actually hand someone a universal property),

through limits (which are ways of building a new object out of a bunch of old ones),

through adjoint functors (which give ways to ‘freely’ build an object in one category starting from an object in another).

If you want to see this vague wordy mush here transformed into precise, crystalline beauty, read Tom’s book! It’s not easy to learn this stuff – but it’s good for your brain. It literally rewires your neurons.

Here’s what he wrote, over on the category theory mailing list:


Dear all,

My introductory textbook “Basic Category Theory” was published by Cambridge University Press in 2014. By arrangement with them, it’s now also free online:

It’s also freely editable, under a Creative Commons licence. For instance, if you want to teach a class from it but some of the examples aren’t suitable, you can delete them or add your own. Or if you don’t like the notation (and when have two category theorists ever agreed on that?), you can easily change the Latex macros. Just go the arXiv, download, and edit to your heart’s content.

There are lots of good introductions to category theory out there. The particular features of this one are:
• It’s short.
• It doesn’t assume much.
• It sticks to the basics.



T. Leinster, Basic Category Theory, 1st ed. Cambridge University Press, 2014.

    Syndicated to:

Basic Category Theory by Tom Leinster | Free Ebook Download was originally published on Chris Aldrich | Boffo Socko

Emily Riehl’s new category theory book has some good company

Emily Riehl’s new category theory book has some good company

Emily Riehl's new category theory book has some good company. It's a beautiful book by the way
Emily Riehl’s new category theory book has some good company. It’s a beautiful book by the way.

Instagram filter used: Clarendon

Photo taken at: UCLA Bookstore

I just saw Emily Riehl‘s new book Category Theory in Context on the shelves for the first time. It’s a lovely little volume beautifully made and wonderfully typeset. While she does host a free downloadable copy on her website, the book and the typesetting is just so pretty, I don’t know how one wouldn’t purchase the physical version.

I’ll also point out that this is one of the very first in Dover’s new series Aurora: Dover Modern Math Originals. Dover has one of the greatest reprint collections of math texts out there, I wish them the best in publishing new works with the same quality and great prices as they always have! We need more publishers like this.

    Syndicated to:

Emily Riehl’s new category theory book has some good company was originally published on Chris Aldrich | Boffo Socko

[1609.02422] What can logic contribute to information theory?

[1609.02422] What can logic contribute to information theory? by David EllermanDavid Ellerman(

Logical probability theory was developed as a quantitative measure based on Boole’s logic of subsets. But information theory was developed into a mature theory by Claude Shannon with no such connection to logic. But a recent development in logic changes this situation. In category theory, the notion of a subset is dual to the notion of a quotient set or partition, and recently the logic of partitions has been developed in a parallel relationship to the Boolean logic of subsets (subset logic is usually mis-specified as the special case of propositional logic). What then is the quantitative measure based on partition logic in the same sense that logical probability theory is based on subset logic? It is a measure of information that is named “logical entropy” in view of that logical basis. This paper develops the notion of logical entropy and the basic notions of the resulting logical information theory. Then an extensive comparison is made with the corresponding notions based on Shannon entropy.

Ellerman is visiting at UC Riverside at the moment. Given the information theory and category theory overlap, I’m curious if he’s working with John Carlos Baez, or what Baez is aware of this.

Based on a cursory look of his website(s), I’m going to have to start following more of this work.

    Syndicated to:

[1609.02422] What can logic contribute to information theory? was originally published on Chris Aldrich | Boffo Socko

Eugenia Cheng, author of How to Bake Pi, on Colbert Tonight

Eugenia Cheng, author of How to Bake Pi, on Colbert Tonight

Earlier this year, I read Eugenia Cheng’s brilliant book How to Bake Pi: An Edible Exploration of the Mathematics of Mathematics. Tonight she’s appearing (along with Daniel Craig apparently) on the The Late Show with Stephen Colbert. I encourage everyone to watch it and read her book when they get the chance.


You can also read more about her appearance from Category Theorist John Carlos Baez here: Cakes, Custard, Categories and Colbert | The n-Category Café

My brief review of her book on

How to Bake Pi: An Edible Exploration of the Mathematics of MathematicsHow to Bake Pi: An Edible Exploration of the Mathematics of Mathematics by Eugenia Cheng
My rating: 4 of 5 stars

While most of the book is material I’ve known for a long time, it’s very well structured and presented in a clean and clear manner. Though a small portion is about category theory and gives some of the “flavor” of the subject, the majority is about how abstract mathematics works in general.

I’d recommend this to anyone who wants to have a clear picture of what mathematics really is or how it should be properly thought about and practiced (hint: it’s not the pablum you memorized in high school or even in calculus or linear algebra). Many books talk about the beauty of math, while this one actually makes steps towards actually showing the reader how to appreciate that beauty.

Like many popular books about math, this one actually has very little that goes beyond the 5th grade level, but in examples that are very helpfully illuminating given their elementary nature. The extended food metaphors and recipes throughout the book fit in wonderfully with the abstract nature of math – perhaps this is why I love cooking so much myself.

I wish I’d read this book in high school to have a better picture of the forest of mathematics.

More thoughts to come…

    Syndicated to:

Eugenia Cheng, author of How to Bake Pi, on Colbert Tonight was originally published on Chris Aldrich | Boffo Socko